Welcome to my web page!
I am currently an Assistant Professor in Mathematics at Michigan State University, doing research in Probability and Stochastics. You can find more information below.
Contact
Michigan State University, Department of Mathematics
Office D315, Wells Hall
619 Red Cedar Road
East Lansing, MI 48824
Phone: 517-353-9142
Email: matetski@msu.edu
Research interests
- stochastic PDEs, including regularity structures and rough paths
- integrable probability and the KPZ universality
Education and academic work
Publications
See also Google Scholar, ORCID, arXiv
-
Martingale-driven integrals and singular SPDEs
P.Grazieschi, K.Matetski, H.Weber, Probab. Theory Relat. Fields (to appear), 2024, arXiv -
The dynamical Ising-Kac model in 3D converges to Φ^4_3
P.Grazieschi, K.Matetski, H.Weber, Probab. Theory Relat. Fields (to appear), 2024, arXiv -
Exact solution of TASEP and variants with inhomogeneous speeds and memory lengths
K.Matetski, D.Remenik, 2023, arXiv -
The strong Feller property of the open KPZ equation
A.Knizel, K.Matetski, 2022, arXiv -
Polynuclear growth and the Toda lattice
K.Matetski, J.Quastel, D.Remenik, Accepted to J. Eur. Math. Soc. 2022, arXiv -
Directed mean curvature flow in noisy environment
M.Hairer, A.Gerasimovics, K.Matetski, Comm. Pure Appl. Math., 2023, arXiv -
Exceptional times when the KPZ fixed point violates Johansson’s conjecture on maximizer uniqueness
I.Corwin, A.Hammond, M.Hegde, K.Matetski, Electron. J. Probab., 28: 1-81 (2023), arXiv -
TASEP and generalizations: Method for exact solution
K.Matetski, D.Remenik, Probab. Theory Relat. Fields, 185.1-2, 2023, arXiv -
The KPZ fixed point
K.Matetski, J.Quastel, D.Remenik, Acta Math., Vol. 227 (1), 2021, arXiv -
Characterization of Brownian Gibbsian line ensembles
E.Dimitrov, K.Matetski, Ann. Probab., 49(5), 2021, arXiv -
Stochastic PDE limit of the dynamic ASEP
I.Corwin, P.Ghosal, K.Matetski, Comm. Math. Phys., 380(3), 2020, arXiv -
From the totally asymmetric simple exclusion process to the KPZ fixed point
J.Quastel, K.Matetski, Random matrices, Vol. 26, IAS/Park City Mathematical Series, American Mathematical Society, 2019, arXiv -
Space-time discrete KPZ equation
G.Cannizzaro, K.Matetski, Comm. Math. Phys., 358(2), 2018, arXiv -
Discretisations of rough stochastic PDEs
M.Hairer, K.Matetski, Ann. Probab., 46(3), 2018, arXiv -
Ph.D. thesis, Discretisations of rough stochastic partial differential equations, 2016, link
-
Optimal rate of convergence of the stochastic Burgers-type equations
M.Hairer, K.Matetski, Stoch. Partial Differ. Equ. Anal. Comput., 3(4), 2015, arXiv -
Master thesis, Convergence of infinite dimensional stochastic processes
2012, link -
On risk estimation of homogeneous finite Markov chains with unknown parameters
Yu.Kharin, K.Matetski, Vestnik of Belarusian State University, 2010 -
On forecasting of discrete time series based on Markov chains
Yu.Kharin, K.Matetski, A.Pyatlitski, “Economics, modeling, forecasting”, 2008